Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Clin Transl Radiat Oncol ; 46: 100765, 2024 May.
Article in English | MEDLINE | ID: mdl-38560512

ABSTRACT

Purpose: Due to its close vicinity to critical structures, especially the spinal cord, standards for safety for spine stereotactic body radiotherapy (SBRT) should be high. This study was conducted, to evaluate intrafractional motion during spine SBRT for patients without individualized immobilization (e.g., vacuum cushions) using high accuracy patient monitoring via orthogonal X-ray imaging. Methods: Intrafractional X-ray data were collected from 29 patients receiving 79 fractions of spine SBRT. No individualized immobilization devices were used during the treatment. Intrafractional motion was monitored using the ExacTrac Dynamic (ETD) System (Brainlab AG, Munich, Germany). Deviations were detected in six degrees of freedom (6 DOF). Tolerances for repositioning were 0.7 mm for translational and 0.5° for rotational deviations. Patients were repositioned when the tolerance levels were exceeded. Results: Out of the 925 pairs of stereoscopic X-ray images examined, 138 (15 %) showed at least one deviation exceeding the predefined tolerance values. In all 6 DOF together, a total of 191 deviations out of tolerance were recorded. The frequency of deviations exceeding the tolerance levels varied among patients but occurred in all but one patient. Deviations out of tolerance could be seen in all 6 DOF. Maximum translational deviations were 2.6 mm, 2.3 mm and 2.8 mm in the lateral, longitudinal and vertical direction. Maximum rotational deviations were 1.8°, 2.6° and 1.6° for pitch, roll and yaw, respectively. Translational deviations were more frequent than rotational ones, and frequency and magnitude of deviations showed an inverse correlation. Conclusion: Intrafractional motion detection and patient repositioning during spine SBRT using X-ray imaging via the ETD System can lead to improved safety during the application of high BED in critical locations. When using intrafractional imaging with low thresholds for re-positioning individualized immobilization devices (e.g. vacuum cushions) may be omitted.

2.
Med Phys ; 51(3): 1957-1973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37683107

ABSTRACT

BACKGROUND: Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. PURPOSE: The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. METHODS: We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. RESULTS: A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p < 0.001) over the 37 PCT-DRR IoU > 0.2 cases, but not over the undifferentiated 84 testing cases. CONCLUSIONS: The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung , Algorithms , Fiducial Markers , Image Processing, Computer-Assisted
3.
Phys Imaging Radiat Oncol ; 23: 134-139, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35958289

ABSTRACT

Background and purpose: Patients receiving cranial radiotherapy are immobilized with a thermoplastic mask to restrict patient motion. Depending on the target volume margins and treatment dose, different mask systems are used. Intrafractional movements can be monitored using stereoscopic X-ray imaging. The aim of the present work was to compare the magnitudes of intrafractional deviation for different mask systems. Material and methods: Four different head mask systems (open face mask, open mask, stereotactic mask, double mask) used in the treatment of 40 patients were investigated. In total 487 treatment fractions and 3708 X-ray images were collected. Deviations were calculated by comparison of the acquired X-ray images with digitally reconstructed radiographs. The results of intrafractional X-ray deviations for translational and rotational axes were compared between the different mask systems. Results: Deviations were below 0.6 mm for translations and below 0.6° for rotations for all mask systems. Along the lateral and longitudinal directions the stereotactic mask was superior, while along the vertical direction the double mask showed the lowest deviations. For low rotational deviations the double mask is the best amongst all other mask systems. Conclusion: As expected, the lowest movement was shown using cranial stereotactic mask systems. The results have shown deviations lower than 0.6 mm and 0.6° using any of the four thermoplastic mask systems.

4.
Phys Med ; 101: 104-111, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988480

ABSTRACT

PURPOSE: The interplay between respiratory tumor motion and dose application by intensity modulated radiotherapy (IMRT) techniques can potentially lead to undesirable and non-intuitive deviations from the planned dose distribution. We developed a 4D Monte Carlo (MC) dose recalculation framework featuring statistical breathing curve sampling, to precisely simulate the dose distribution for moving target volumes aiming at a comprehensive assessment of interplay effects. METHODS: We implemented a dose accumulation tool that enables dose recalculations of arbitrary breathing curves including the actual breathing curve of the patient. This MC dose recalculation framework is based on linac log-files, facilitating a high temporal resolution up to 0.1 s. By statistical analysis of 128 different breathing curves, interplay susceptibility of different treatment parameters was evaluated for an exemplary patient case. To facilitate prospective clinical application in the treatment planning stage, in which patient breathing curves or linac log-files are not available, we derived a log-file free version with breathing curves generated by a random walk approach. Interplay was quantified by standard deviations σ in D5%, D50% and D95%. RESULTS: Interplay induced dose deviations for single fractions were observed and evaluated for IMRT and volumetric arc therapy (σD95% up to 1.3 %) showing a decrease with higher fraction doses and an increase with higher MU rates. Interplay effects for conformal treatment techniques were negligible (σ<0.1%). The log-file free version and the random walk generated breathing curves yielded similar results (deviations in σ< 0.1 %) and can be used as substitutes for interplay assessment. CONCLUSION: It is feasible to combine statistically sampled breathing curves with MC dose calculations. The universality of the presented framework allows comprehensive assessment of interplay effects in retrospective and prospective clinically relevant scenarios.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Monte Carlo Method , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiration , Retrospective Studies
5.
J Appl Clin Med Phys ; 23(10): e13754, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36001389

ABSTRACT

In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment. The surface optical/thermal- and the stereoscopic X-ray imaging positioning systems of EXTD was evaluated and compared to cone-beam computed tomography (CBCT). Additionally, the congruence with the radiation isocenter was tested. A Winston Lutz test was executed several times over 1 year, and repeated end-to-end positioning tests were performed. The magnitude of the displacements between all systems, CBCT, stereoscopic X-ray, optical-surface imaging, and MV portal imaging was within the submillimeter range, suggesting that the image guidance provided by EXTD is accurate at any couch angle. Additionally, results from the evaluation of 14 patients with intracranial tumors treated with open-face masks are reported, and limited differences with a maximum of 0.02 mm between optical/thermal- and stereoscopic X-ray imaging were found. As the optical/thermal positioning system showed a comparable accuracy to other IGRT systems, and due to its constant monitoring capability, it can be an efficient tool for detecting intra-fractional motion and for real-time tracking of the surface position during RT.


Subject(s)
Radiosurgery , Radiotherapy, Image-Guided , Humans , Phantoms, Imaging , X-Rays , Workflow , Radiosurgery/methods , Radiography , Cone-Beam Computed Tomography/methods , Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/methods
6.
Z Med Phys ; 32(3): 296-311, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35504799

ABSTRACT

Frameless single-isocenter non-coplanar stereotactic radiosurgery (SRS) for patients with multiple brain metastases is a treatment at high geometrical complexity. The goal of this study is to analyze the dosimetric impact of non-coplanar image guidance with stereoscopic X-ray imaging. Such an analysis is meant to provide insights on the adequacy of safety margins, and to evaluate the benefit of imaging at non-coplanar configurations. The ExacTrac® (ET) system (Brainlab AG, Munich, Germany) was used for stereoscopic X-ray imaging in frameless single-isocenter non-coplanar SRS for multiple brain metastases. Sub-millimeter precision was found for the ET-based pre-treatment setup, whereas a degradation was noted for non-coplanar treatment angles. Misalignments without intra-fractional positioning corrections were reconstructed in 6 degrees of freedom (DoF) to resemble the situation without non-coplanar image guidance. Dose recalculation in 20 SRS patients with applied positioning corrections did not reveal any significant differences in D98% for 75 planning target volumes (PTVs) and gross tumor volumes (GTVs). For recalculation without applied positioning corrections, significant differences (p<0.05) were reported in D98% for both PTVs and GTVs, with stronger effects for small PTV volumes. A worst-case analysis at increasing translational and rotational misalignment revealed that dosimetric changes are a complex function of the combination thereof. This study highlighted the important role of positioning correction with ET at non-coplanar configurations in frameless single-isocenter non-coplanar SRS for patients with multiple brain metastases. Uncorrected patient misalignments at non-coplanar couch angles were linked to a significant loss of PTV coverage, with effects varying according to the combination of single DoF and PTV geometrical properties.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Germany , Humans , Radiometry , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
7.
Radiat Oncol ; 15(1): 117, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448164

ABSTRACT

BACKGROUND: Patients with left-sided breast cancer have an increased risk of cardiovascular disease (CVD) after radiotherapy (RT). While the awareness of cardiac toxicity has increased enormously over the last decade, the role of individual baseline cardiac risks has not yet been systematically investigated. Aim of the present study was to evaluate the impact of baseline CVD risks on radiation-induced cardiac toxicity. METHODS: Two hundred ten patients with left-sided breast cancer treated in the prospective Save-Heart Study using a deep inspiration breath-hold (DIBH) technique were analysed regarding baseline risk factors for CVD. Three frequently used prediction tools (Procam, Framingham and Reynolds score) were applied to evaluate the individual CVD risk profiles. Moreover, 10-year CVD excess absolute risks (EAR) were estimated using the individual mean heart dose (MHD) of treatment plans in free breathing (FB) and DIBH. RESULTS: The individual baseline CVD risk factors had a strong impact on the 10-year cumulative CVD risk. The mean baseline risks of the non-diabetic cohort (n = 200) ranged from 3.11 to 3.58%, depending on the risk estimation tool. A large number of the non-diabetic patients had a very low 10-year CVD baseline risk of ≤1%; nevertheless, 8-9% of patients reached ≥10% baseline 10-year CVD risk. In contrast, diabetic patients (n = 10) had significantly higher baseline CVD risks (range: 11.76-24.23%). The mean 10-year cumulative risk (Framingham score) following RT was 3.73% using the DIBH-technique (MHD:1.42Gy) and 3.94% in FB (MHD:2.33Gy), after adding a 10-year-EAR of + 0.34%(DIBH) and + 0.55%(FB) to the baseline risks, respectively. Smoking status was one of the most important and modifiable baseline risk factors. After DIBH-RT, the 182 non-smoking patients had a mean 10-year cumulative risk of 3.55% (3.20% baseline risk, 0.35% EAR) as compared to 6.07% (5.60% baseline risk, 0.47% EAR) for the 28 smokers. CONCLUSION: In the present study, all CVD prediction tools showed comparable results and could easily be integrated into daily clinical practice. A systematic evaluation and screening helps to identify high-risk patients who may benefit from primary prevention. This could result in an even higher benefit than from heart-sparing irradiation techniques alone.


Subject(s)
Cardiovascular Diseases , Heart , Organs at Risk , Radiotherapy/adverse effects , Unilateral Breast Neoplasms/radiotherapy , Adult , Cardiovascular Diseases/epidemiology , Female , Heart/radiation effects , Humans , Middle Aged , Organs at Risk/radiation effects , Radiation Injuries/epidemiology , Risk Factors
8.
Strahlenther Onkol ; 195(11): 964-971, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31332457

ABSTRACT

OBJECTIVE: The impact of optical surface guidance on the use of portal imaging and the initial set-up duration in patients receiving postoperative radiotherapy of the breast or chest wall was investigated. MATERIAL AND METHODS: A retrospective analysis was performed including breast cancer patients who received postoperative radiotherapy between January 2016 and December 2016. One group of patients received treatment before the optical surface scanner was installed (no-OSS) and the other group was positioned using the additional information derived by the optical surface scanner (OSS). The duration of the initial set-up was recorded for each patient and a comparison of both groups was performed. Accordingly, the differences between planned and actually acquired portal images during the course of radiotherapy were compared between both groups. RESULTS: A total of 180 breast cancer patients were included (90 no-OSS, 90 OSS) in this analysis. Of these, 30 patients with left-sided breast cancer received radiotherapy in deep inspiration breath hold (DIBH). The mean set-up time was 10 min and 18 s and no significant difference between the two groups of patients was found (p = 0.931). The mean set-up time in patients treated without DIBH was 9 min and 45 s compared to 13 min with DIBH (p < 0.001), as portal imaging was performed in DIBH. No significant difference was found in the number of acquired to the planned number of portal images during the entire radiotherapy treatment for both groups (p = 0.287). CONCLUSION: Optical surface imaging is a valuable addition for primary patient set-up. The findings confirm that the addition of surface-based imaging did not prolong the clinical workflow and had no significant impact on the number of portal verification images carried out during the course of radiotherapy.


Subject(s)
Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Adjuvant/methods , Radiotherapy, Image-Guided/methods , Tomography, Optical/methods , Unilateral Breast Neoplasms/radiotherapy , Combined Modality Therapy , Female , Humans , Retrospective Studies , Time Factors , Unilateral Breast Neoplasms/surgery
9.
Med Phys ; 46(7): 3268-3277, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31074510

ABSTRACT

PURPOSE: The need for four-dimensional (4D) treatment planning becomes indispensable when it comes to radiation therapy for moving tumors in the thoracic and abdominal regions. The primary purpose of this study is to combine the actual breathing trace during each individual treatment fraction with the Linac's log file information and Monte Carlo 4D dose calculations. We investigated this workflow on multiple computed tomography (CT) datasets in a clinical environment for stereotactic body radiation therapy (SBRT) treatment planning. METHODS: We have developed a workflow, which allows us to recalculate absorbed dose to a 4DCT dataset using Monte Carlo calculation methods and accumulate all 4D doses in order to compare them to the planned dose using the Linac's log file, a 4DCT dataset, and the patient's actual breathing curve for each individual fraction. For five lung patients, three-dimensional-conformal radiation therapy (3D-CRT) and volumetric modulated arc treatment (VMAT) treatment plans were generated on four different CT image datasets: a native free-breathing 3DCT, an average intensity projection (AIP) and a maximum intensity projection (MIP) CT both obtained from a 4DCT, and a 3DCT with density overrides based on the 3DCT (DO). The Monte Carlo 4D dose has been calculated on each 4DCT phase using the Linac's log file and the patient's breathing trace as a surrogate for tumor motion and dose was accumulated to the gross tumor volume (GTV) at the 50% breathing phase (end of exhale) using deformable image registration. RESULTS: Δ D 98 % and Δ D 2 % between 4D dose and planned dose differed largely for 3DCT-based planning and also for DO in three patients. Least dose differences between planned and recalculated dose have been found for AIP and MIP treatment planning which both tend to be superior to DO, but the results indicate a dependency on the breathing variability, tumor motion, and size. An interplay effect has not been observed in the small patient cohort. CONCLUSIONS: We have developed a workflow which, to our best knowledge, is the first incorporation of the patient breathing trace over the course of all individual treatment fractions with the Linac's log file information and 4D Monte Carlo recalculations of the actual treated dose. Due to the small patient cohort, no clear recommendation on which CT can be used for SBRT treatment planning can be given, but the developed workflow, after adaption for clinical use, could be used to enhance a priori 4D Monte Carlo treatment planning in the future and help with the decision on which CT dataset treatment planning should be carried out.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms/radiotherapy , Monte Carlo Method , Radiation Dosage , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Adult , Aged , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Male , Middle Aged , Radiotherapy Dosage
10.
Radiat Oncol ; 14(1): 244, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888680

ABSTRACT

BACKGROUND: Volumetric Modulated Arc Therapy (VMAT) techniques have recently been implemented in clinical practice for total-body irradiation (TBI). To date, most techniques still use special couches, translational tables, or other self-made immobilization devices for dose delivery. Aim of the present study was to report the first results of a newly developed rotatable tabletop designed for VMAT-TBI. METHODS: The VMAT-TBI technique theoretically allows the use of any standard positioning device at the linear accelerator. Nevertheless, the main problem is that patients taller than 120 cm cannot be treated in one position due to the limited cranial-caudal couch shift capacities of the linac. Therefore, patients are usually turned from a head-first supine position (HFS) to a feet-first supine position (FFS) to overcome this limitation. The newly developed rotatable tabletop consists completely of carbon fiber, including the ball bearing within the base plate of the rotation unit. The patient can be turned 180° from a HFS to a FFS position within a few seconds, without the need of repositioning. RESULTS: The first 20 patients had a median age of 47 years, and received TBI before bone marrow transplantation for acute myeloid leukemia. Most patients (13/20) received a TBI dose of 4 Gy in 2 fractions, twice daily. The mean number of applied monitor units (MU) was 6476 MU using a multi-arcs and multi-isocenter VMAT-TBI technique. The tabletop has been successfully used in daily clinical practice and helped to keep the treatment times at an acceptable level. During the first treatment fraction, the mean overall treatment time (OTT) was 57 min. Since no additional image guidance was used in fraction 2 of the same day, the OTT was reduced to mean 38 min. CONCLUSIONS: The easy and reproducible rotation of the patient on the treatment couch using the rotatable tabletop, is time-efficient and overcomes the need of repositioning the patient after turning from a HFS to a FFS position during VMAT TBI. Furthermore, it prevents couch-gantry collisions, incorrect isocenter shifts and beam mix-up due to predicted absolute table coordinates, which are recorded to the R + V system with the corresponding beams.


Subject(s)
Leukemia, Myeloid, Acute/radiotherapy , Organs at Risk/radiation effects , Particle Accelerators/instrumentation , Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Whole-Body Irradiation/methods , Adult , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Patient Selection , Phantoms, Imaging , Prognosis , Radiotherapy Dosage , Retrospective Studies , Young Adult
11.
Z Med Phys ; 28(2): 88-95, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29338903

ABSTRACT

Respiratory motion remains a source of major uncertainties in radiotherapy. Respiratory correlated computed tomography (referred to as 4DCT) serves as one way of reducing breathing artifacts in 3D-CTs and allows the investigation of tumor motion over time. The quality of the 4DCT images depends on the data acquisition scheme, which in turn is dependent on the vendor. Specifically, the only way Toshiba Aquilion LB CT scanners can reconstruct 4DCTs is a cycle-based reconstruction using triggers provided by an external surrogate signal. The accuracy is strongly dependent on the method of trigger generation. Two consecutive triggers are used to define a breathing cycle which is divided into respiratory phases of equal duration. The goal of this study is to identify if there are advantages in the usage of local-amplitude based sorting (LAS) of the respiration motion states, in order to reduce image artifacts and improve 4DCT quality. Furthermore, this study addresses the generation and optimization of a clinical workflow using as surrogate motion monitoring system the Sentinel™ (C-RAD AB, Sweden) optical surface scanner in combination with a Toshiba Aquilion LB CT scanner. For that purpose, a phantom study using 10 different breathing waveforms and a retrospective patient study using the 4DCT reconstructions of 10 different patients has been conducted. The error in tumor volume has been reduced from 2.9±3.7% to 2.7±2.6% using optimal cycle-based triggers (manipulated CBS) and to 2.7±2.2% using LAS in the phantom study. Moreover, it was possible to decrease the tumor volume variability from 5.0±3.6% using the original cycle-based triggers (original CBS) to 3.5±2.5% using the optimal triggers and to 3.7±2.7% using LAS in the patient data analysis. We therefore propose the usage of the manipulated CBS, also with regard to an accurate and safe clinical workflow.


Subject(s)
Four-Dimensional Computed Tomography/standards , Respiratory-Gated Imaging Techniques/standards , Thoracic Cavity/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Workflow
12.
Strahlenther Onkol ; 194(3): 196-205, 2018 03.
Article in English | MEDLINE | ID: mdl-28916844

ABSTRACT

PURPOSE: Modern breast cancer radiotherapy techniques, such as respiratory-gated radiotherapy in deep-inspiration breath-hold (DIBH) or volumetric-modulated arc radiotherapy (VMAT) have been shown to reduce the high dose exposure of the heart in left-sided breast cancer. The aim of the present study was to comparatively estimate the excess relative and absolute risks of radiation-induced secondary lung cancer and ischemic heart disease for different modern radiotherapy techniques. METHODS: Four different treatment plans were generated for ten computed tomography data sets of patients with left-sided breast cancer, using either three-dimensional conformal radiotherapy (3D-CRT) or VMAT, in free-breathing (FB) or DIBH. Dose-volume histograms were used for organ equivalent dose (OED) calculations using linear, linear-exponential, and plateau models for the lung. A linear model was applied to estimate the long-term risk of ischemic heart disease as motivated by epidemiologic data. Excess relative risk (ERR) and 10-year excess absolute risk (EAR) for radiation-induced secondary lung cancer and ischemic heart disease were estimated for different representative baseline risks. RESULTS: The DIBH maneuver resulted in a significant reduction of the ERR and estimated 10-year excess absolute risk for major coronary events compared to FB in 3D-CRT plans (p = 0.04). In VMAT plans, the mean predicted risk reduction through DIBH was less pronounced and not statistically significant (p = 0.44). The risk of radiation-induced secondary lung cancer was mainly influenced by the radiotherapy technique, with no beneficial effect through DIBH. VMAT plans correlated with an increase in 10-year EAR for radiation-induced lung cancer as compared to 3D-CRT plans (DIBH p = 0.007; FB p = 0.005, respectively). However, the EARs were affected more strongly by nonradiation-associated risk factors, such as smoking, as compared to the choice of treatment technique. CONCLUSION: The results indicate that 3D-CRT plans in DIBH pose the lowest risk for both major coronary events and secondary lung cancer.


Subject(s)
Breast Neoplasms/radiotherapy , Lung Neoplasms/etiology , Myocardial Ischemia/etiology , Neoplasms, Radiation-Induced/etiology , Neoplasms, Second Primary/etiology , Radiotherapy, Conformal/adverse effects , Radiotherapy, Intensity-Modulated/adverse effects , Aged , Breath Holding , Female , Heart/radiation effects , Humans , Middle Aged , Radiation Injuries/etiology , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Respiratory-Gated Imaging Techniques/adverse effects , Risk
13.
Strahlenther Onkol ; 194(3): 273-274, 2018 03.
Article in English | MEDLINE | ID: mdl-29098303

ABSTRACT

Correction to: Strahlenther Onkol 2017 https://doi.org/10.1007/s00066-017-1213-y Unfortunately, during copy editing, the titles of Fig. 2a and 2b were removed.The correct Fig. 2a and 2b are shown below. The original article has been corrected ….

14.
Radiat Oncol ; 11: 88, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27350636

ABSTRACT

BACKGROUND: Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. METHODS: We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. RESULTS: The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. CONCLUSIONS: Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.


Subject(s)
Carcinoma, Hepatocellular/surgery , Fiducial Markers , Liver Neoplasms/surgery , Patient Positioning , Radiosurgery , Surgery, Computer-Assisted/methods , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cone-Beam Computed Tomography , Feasibility Studies , Follow-Up Studies , Four-Dimensional Computed Tomography , Humans , Liver Neoplasms/pathology , Motion , Prognosis , Respiration , Retrospective Studies
15.
Radiat Oncol ; 10: 68, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25881018

ABSTRACT

BACKGROUND: Knowing the technical characteristics of gated radiotherapy equipment is crucial for ensuring precise and accurate treatment when using techniques such as Deep-Inspiration Breath-Hold and gating under free breathing. With one of the first installations of the novel surface imaging system Catalyst™ (C-RAD AB, Sweden) in connection with an Elekta Synergy linear accelerator (Elekta AB, Sweden) via the Elekta Response Interface, characteristics like dose delivery accuracy and time delay were investigated prior to clinical implementation of gated treatments in our institution. METHODS: In this study a moving phantom was used to simulate respiratory motion which was registered by the Catalyst™ system. The gating level was set manually. Within this gating window a trigger signal is automatically sent to the linac initiating treatment delivery. Dose measurements of gated linac treatment beams with different gating levels were recorded with a static 2D-Diode Array (MapCheck2, Sun Nuclear Co., USA) and compared to ungated reference measurements for different field sizes. In addition, the time delay of gated treatment beams was measured using radiographic film. RESULTS: The difference in dose delivery between gated and ungated treatment decreases with the size of the chosen gating level. For clinically relevant gating levels of about 30%, the differences in dose delivery accuracy remain below 1%. In comparison with other system configurations in literature, the beam-on time delay shows a large deviation of 851 ms ± 100 ms. CONCLUSIONS: When performing gated treatment, especially for free-breathing gating, factors as time delay and dose delivery have to be evaluated regularly in terms of a quality assurance process. Once these parameters are known they can be accounted and compensated for, e.g. by adjusting the pre-selected gating level or the internal target volume margins and by using prediction algorithms for breathing curves. The usage of prediction algorithms becomes inevitable with the high beam-on time delay which is reported here.


Subject(s)
Algorithms , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiratory-Gated Imaging Techniques/methods , Humans , Motion , Radiotherapy Dosage , Respiration , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...